
A Comparison of Techniques for Scheduling Fleets of Earth-Observing
Satellites

Al Globus
CSC

NASA Ames

James Crawford
RIACS

NASA Ames

Jason Lohn
NASA Ames

Anna Pryor
NASA Ames

Abstract

We have run experiments comparing fourteen tech-
niques on a realistically-sized model of the Earth-
Observing Satellite (EOS) scheduling problem. This
problem requires taking as many high-priority ob-
servations as possible while satisfying complex con-
straints. We compared iterated sampling (ISAMP
- basically random search), heuristic-based stochastic
search (HBSS) with contention heuristics and multi-
ple variants of the genetic algorithm, simulated an-
nealing, squeaky wheel optimization and stochastic hill
climbing on a three satellite, one week, 6,000+ obser-
vation scheduling problem. Simulated annealing with
’temperature dependent’ random swap mutation oper-
ators was the clear winner. Random mutation opera-
tors outperformed squeaky mutation operators. HBSS
with contention heuristics was hundreds of times slower
than all other techniques and produced much worse
schedules than all techniques except ISAMP. For this
problem, at least among the techniques tested, simple,
fast and stupid with learning significantly outperforms
complex, slow and smart without learning.

Introduction
A growing fleet of scientific, military, and commercial
Earth observing satellites (EOS) circles the globe. Most
of these satellites are within about 700 km of the sur-
face. Observations of any particular location can only
be made only when the satellite is overhead. A sin-
gle orbit takes approximately 100 minutes and, since
the Earth turns underneath the satellite, any particu-
lar point on the surface is only occasionally, though pre-
dictably, visible. Although there are approximately 60
EOS satellites in orbit today, image collection is nearly
always scheduled separately for each satellite with man-
ual coordination, if any. Some studies (Globus et al.
2002) (Rao, Soma, & Padmashree 1998) have suggested
that automatic coordination of multiple satellites can
be beneficial, but the best scheduling techniques to use
is not clear.

This study compares fourteen EOS scheduling tech-
niques on a realistically-sized model problem. In par-
ticular, we compare simulated annealing, hill climbing,
the genetic algorithm, squeaky wheel optimization, iter-
ated sampling (ISAMP) and heuristic-based stochastic

search (HBSS) (Bresina 1996) with contention heuris-
tics (Frank et al. 2002). In the next section we describe
the scheduling problem and our model. A description
of the scheduling techniques follows. The nature and
results of our computational experiments are then pre-
sented along with analysis. Space limitations preclude
a review of previous work, but (Globus et al. 2002) and
(Globus et al. 2003) provide such a discussion.

EOS Scheduling Problem
In this section we first describe the EOS scheduling
problem as perceived by satellite operators and devel-
opers. Then we describe the model of the problem used
in this experiment.

EOS scheduling attempts to take as many high-
priority observations as possible within a fixed period
of time on a fixed set of satellite-born sensors. For ex-
ample, the Landsat 7 satellite scheduler is considered to
have done a good job if 250 observations are made each
day. There are generally far more than 250 observation
requests. EOS scheduling is complicated by a number
of important constraints. Potin (Potin 1998) lists some
of these constraints as:

1. Revisit limitations. A target must be within sight of
the satellite; and EOS satellites travel in fixed orbits.
These orbits pass over any particular place on Earth
at limited times so there are only a few observation
windows (and sometimes none) for a given target.

2. Time required to take each image. Most Earth ob-
serving satellites take a one dimensional image and
use the spacecraft‘s orbital motion to sweep out the
area to be imaged. For example, a Landsat image
requires 24 seconds of orbital motion.

3. Limited on-board data storage. Images are typically
stored on a solid state recorder (SSR) until they can
be sent to the ground.

4. Ground station availability (SSR dumps). The data
in the SSR is sent to the ground when the satellite
passes over a ground station. Ground station win-
dows are limited as with any other target.

5. Transition time between look angles (slewing). Some
instruments are mounted on motors that can point

side-to-side (cross-track).
6. Power and thermal control.
7. Coordination of multiple satellites.
8. Cloud cover. Some sensors cannot see through

clouds. Not only do clouds cover much of the Earth
at any given time, but some locations are nearly al-
ways cloudy.

9. Stereo pair acquisition or multiple observations of the
same target by different sensors or the same sensor
at different times.

For further details of the EOS scheduling problem see
(Frank et al. 2002) and (Sherwood et al. 1998).

Our model problem implements all these constraints
except the last two. The model problem consists of
three satellites in Sun-synchronous orbits (orbits in
which the equator is crossed a the same local time each
orbit) for one week. The satellites are spaced ten min-
utes apart. Each satellite carries one sensor mounted
on a cross-track slewable motor that can point up to 24
degrees to either side of nadir (nadir is straight down)
and turns one degree in two seconds. Each satellite has
an SSR capable of storing 50 arbitrary units.

We model our power and thermal constraints using
so called duty cycle constraints, the approach taken by
NASA’s Landsat 7 satellite. A duty cycle constraint
requires that the sensor not be turned on for longer
that a maximum time within any interval of a certain
length. This insures conformance with power, thermal,
and other physical constraints on the spacecraft. Our
model problem uses the Landsat 7 duty cycles. Specif-
ically, a sensor may not be used for more than:

1. 34 minutes in any 100 minute period,
2. 52 minutes in any 200 minute period, or
3. 131 minutes in any 600 minute period.

There is one ground station in Alaska. Whenever a
satellite comes within sight of the ground station it is
assumed to completely empty it‘s SSR, which is then
available for additional observation storage. There are
approximately 75 SSR dumps per spacecraft during the
week. Since some orbits are over oceans and all targets
are on land, some SSR dump opportunities are wasted
on an empty SSR.

6300 observation targets were randomly generated on
land. Of these, 6114 were observable by at least one
satellite during the one week scheduling period. The
targets are assumed to be at the center of a rectangle
that requires 24 seconds of satellite motion to image.
Each observation requires one, three, or five arbitrary
storage units (evenly distributed) on the SSR. Each ob-
servation was assigned a priority from one to six evenly
spaced in 0.1 increments. Each observation has 2-24
windows, times when a satellite is within view of the
observation‘s target. Orbits and windows were deter-
mined by the free version of the Analytical Graphics
Inc.’s Satellite Tool Kit, also known as the STK (see
www.stk.com).

The fitness (quality) of each schedule is determined
by a weighted sum (smaller numbers indicate better
fitness):

F = wp

∑
Ou

Po + wsS + waA (1)

where F is the fitness, Ou is the set of unscheduled
observation, Po is the priority of an observation, S is the
total time spent slewing, A is the sum of the off-nadir
pointing angle for all scheduled observations, w stands
for weight, wp = 1, ws = 0.01, and wa = 0.00137.
Note that the weights favor the priority of unscheduled
observations over pointing and slewing time objectives.

Scheduling Techniques

This study compares fourteen search techniques ap-
plied to the EOS scheduling problem. The simplest
techniques were simulated annealing, hill climbing, two
variants of the genetic algorithm, and ISAMP (essen-
tially random search) taking random steps. By us-
ing a more intelligent mutation operator, these algo-
rithms become variants of squeaky wheel optimization
(Joslin & Clements 1999). Finally, we examined HBSS
(Bresina 1996) with contention heuristics (Frank et al.
2002) where a great deal of processing is devoted to de-
termining the order in which observations are placed in
schedule timelines.

We represent a schedule as a permutation or order-
ing (the genotype) of the observations. A simple, de-
terministic, one-observation scheduler assigns resources
to observations in the order indicated by the permuta-
tion (except for HBSS). This produces a timeline (the
phenotype) with all of the scheduled observations, the
time they were taken, and the resources (SSR, sensor,
pointing angle) used. The one-observation scheduler as-
signs times and resources to observations using earliest-
first scheduling heuristics while maintaining consistency
with sensor availability, onboard memory (SSR) and
slewing constraints. If an observation cannot be sched-
uled without violating the current constraints (those
created by scheduling observations from earlier in the
permutation), the observation is left unscheduled.

Simple earliest-first scheduling starting at epoch
(time = 0) had some problems. We discovered that
the algorithm works better if ’earliest-first’ starts at
some random time rather than at epoch. If the obser-
vation cannot be scheduled before the end of time, the
algorithm starts at epoch and continues searching for
a constraint-free window until the observation is sched-
uled or the initial time is reached. The time each ob-
servation is scheduled (or, if unscheduled, what time
’earliest-first’ search started) is stored along with the
permutation, is preserved by mutation and crossover,
and is used as the starting point for the one-observation
scheduler operating on modified versions of the current
permutation. The extra scheduling flexibility may ex-
plain why this approach works better than earliest-first
starting at epoch.

Constraints are enforced by representing sensors,
slew-motors and SSRs as timelines. Scheduling an ob-
servation causes timelines to take on appropriate values
(i.e., in use for a sensor, slew motor setting, amount of
SSR memory available) at different times.

The simplest algorithm tested was ISAMP, which is
essentially a random search. With ISAMP, each sched-
ule is generated from a random permutation with ran-
dom start times for the one-observation scheduler.

The next class of algorithms tested were the ’evo-
lutionary’ search techniques, which we define here as
those that start with random permutations and gener-
ate new permutations with mutation and/or crossover.
Unlike ISAMP, these algorithms learn in the sense that
they use past experience and gradually improve the
schedules generated. The algorithms tested were:

1. Stochastic hill climbing.
2. Simulated annealing. The temperature starts at 100

(arbitrary units) and is multiplied by 0.92 every 1000
children (100,000 children are generated per run).

3. A steady-state tournament selection genetic algo-
rithm with population size 100. The individual to
replace is chosen by a tournament from the whole
population where the least fit is replaced. Tourna-
ment size is always two.

4. A generational elitist genetic algorithm. The popu-
lation size is 110 where the 10 best individuals are
copied into the next generation. Parents are chosen
by tournament (size = 2).

Each search technique was tested with three mutation
operators:

1. Random swap. Two permutation locations are cho-
sen at random and the observations are swapped,
with 1-15 swaps (chosen at random) per mutation.
Earlier experiments determined that allowing more
than one swap improved scheduling (Globus et al.
2003). A single random swap is called order-based
mutation (Syswerda & Palmucci 1991).

2. Temperature-dependent swap. Here the number of
swaps (1-15) is still chosen at random but with a bias.
Early in evolution a larger number of swaps tend to
be used, and later in evolution fewer swaps are per-
formed. This is analogous to the ’temperature’ de-
pendent behavior of simulated annealing. The choice
of the number of swaps is determined by a weighted
roulette wheel where the weights vary linearly as evo-
lution proceeds starting at n and ending at 15 − n
where n is the number of swaps. Earlier experiments
tried fewer swaps early in evolution and more swaps
later. This didn’t work as well.

3. Squeaky shift. This mutation operator implements
squeaky wheel optimization. The mutator shifts 1-15
(chosen randomly) ’deserving’ observations earlier in
the permutation. Early in the permutation an ob-
servation is more likely to be scheduled since fewer
other observations will have been scheduled creating

additional constraints. Each observation to shift for-
ward is chosen by a tournament of size 50, 100, 200,
or 300 (chosen at random each time). The observa-
tion is always chosen from the last half of the per-
mutation. The position-to-shift-in-front-of is chosen
by a tournament of the same size (each time) and is
guarrenteed to be at a location at least half way to
the front of the permutation (starting at the ’deserv-
ing’ observation). The observation most deserving to
move earlier in the permutation is determined by the
following characteristics (in order):

(a) unscheduled rather than scheduled
(b) higher priority
(c) later in the permutation

The position-to-shift-in-front-of tournament looks for
the opposite characteristics.
We have tested a number of other mutation operators

but the ones tested in this experiment performed the
best. See (Globus et al. 2003) for some of these data.

In the case of the genetic algorithms half of all chil-
dren are created by mutation and the other half by
crossover. The crossover operator is Syswerda and Pal-
mucci’s position-based crossover (Syswerda & Palmucci
1991). Roughly half of the permutation positions are
chosen at random (50% probability per position). The
observations in these positions are copied from the fa-
ther to the same permutation location in the child. The
remaining observations fill in the child‘s other permu-
tation positions in the order they appear in the mother.

The final algorithm tested was HBSS with contention
heuristics. HBSS does not use the permutation or the
one-observation scheduler. The observations are still
scheduled one at a time, but the next observation to
schedule is chosen by a weighted roulette wheel. For
a given observation, the window (time when a satel-
lite is in view of the target) to use is chosen by another
weighted roulette wheel. Observations and windows are
assigned dynamic weights which depend on the obser-
vations that have been scheduled (or found to be un-
schedulable) and windows that do not violate any con-
straint except the duty cycle constraint. The duty cycle
constraint is not considered by the contention heuristics
for performance reasons. If the chosen window is found
to violate a duty cycle constraint it is discarded and
another window chosen.

The weight of an observation is a function of how
difficult it is to allocate a sensor and space on the SSR.
An observations‘s difficulty is the minimum contention
of the observation‘s windows. The contention of each
window is a function of the other observation’s windows
that have incompatible sensor use requirements and/or
compete for the SSR. This is modulated by the need of
each observation, which is a function of an observation’s
priority and number of it‘s windows that do not violate
the current constraints. The weight of a window is it‘s
contention. The weighted roulette wheel that chooses
the next window prefers windows with the lower weight.
Formally:

Do = wpP + wsWmc(Cs) + wssrWmc(Cssr) (2)

Cs =
∑
Os

Ns (3)

Cssr =
∑
Ossr

Nssr (4)

Ns = P/|Wa| (5)
Nssr = SSRaP/|Wa| (6)

where Do is an observation’s difficulty, P is an obser-
vation’s priority, Wmc is the observation’s window with
the minimum contention over all of an observation’s
windows that are believed not to violate current con-
straints, Cs is a window’s sensor contention, Cssr is a
window’s SSR contention, w stands for weight, wp =
1, ws = 1, wssr = 1, Os is the set of observations that
cannot use a window’s sensor if the window is scheduled
due to sensor use or slewing constraints, Ns is an obser-
vation’s sensor need, Ossr is the set of observations that
use the SSR between the same two SSR dumps and are
not believed to violate current constraints, Nssr is an
observation’s SSR need, SSRa is the amount of mem-
ory currently available in the SSR, and Wa is the set of
an observation’s windows that are not believed to vio-
late currant constraints; remember that the duty-cycle
constraints are not considered in this assessment.

All of these values, except the priority and weights,
are updated every time an observation is scheduled or
found to violate the constraints, including the duty cy-
cle constraint. This requires a great deal of complex
memory and CPU intensive code.

Note that the weights are simply set to one. There
may be a more optimal setting of these weights but
finding betters weights involves running the scheduler
a great deal which is computationally expensive. With
a simpler problem, a search for better weights did not
improve schedule quality.

HBSS with contention heuristics is hundreds of times
slower than the other techniques on this problem, and
thousands of times slower on smaller problems with
much slower slewing motors (more windows are incom-
patible with each other). The contention heuristics re-
quire large, complex data structures to incrementally
update the need, contention, difficulty and weight of
each as-yet-unscheduled observation and it’s windows.
This requires substantial memory. For example, this
model problem with no limits on the slew angle could
not fit in 400 megabytes (there were more observation
windows and more were incompatible with each other).

Experiment

To find the best algorithm for the model problem we
compared a total of fourteen techniques. These were
ISAMP, HBSS, and every combination of four search
techniques – hill climbing, simulated annealing, steady
state GA, and generational GA – with three mutation

operators – 1-15 random swaps, 1-15 temperature de-
pendent swaps, and 1-15 squeaky shifts. Except for
HBSS, 32 jobs with identical parameters (except the
random number seed) were run for each algorithm.
Each job generated approximately 100,000 schedules
(the GA runs generated slightly more). On one Athlon
processor of our Linux cluster these jobs took 2-3 hours
each.

By using our entire cluster for HBSS, we were able
to run the equivalent of eight 100,000 schedule jobs.
Generating only 10,000 HBSS schedules takes about 69
hours on the same Athlon processor, so its a couple hun-
dred times slower than the other techniques. Because
the HBSS data are different they are not included in
tables and figures to avoid the impression the data are
directly comparable. However, the HBSS results were
so poor (barely better than ISAMP) that the difference
in data size makes little difference to the conclusions.

Table 1 compares the mean fitness. Nearly all of the
differences were statistically significant by both t-test
and ks-test, with confidence levels usually far above
99%. We see that simulated annealing with temper-
ature dependent swaps (SaTd) performs best with al-
gorithms using simulated annealing, hill climbing, tem-
perature dependent swaps, and random swaps clearly
leading. Interestingly, although temperature dependent
swaps won with simulated annealing and hill climbing,
random swaps was superior for both genetic algorithms.
The message seems to be modify one schedule, take ran-
dom steps, and restrict steps more and more as evolu-
tion proceeds.

Simulated annealing and hill-climbing with the
squeaky shift operator were next. These outperform
the genetic algorithm regardless of mutation operator.
Again, within the genetic algorithms the squeaky shift
mutator performs the worst.

ISAMP, as one might expect for random search, per-
formed the worst. However, the very best HBSS sched-
ule (out of 800,000 generated) was only a little bit better
than the ISAMP mean.

The small standard deviations for all techniques sug-
gests that all runs for a given technique get about the
same fitness. Thus, even if the fitness landscape is
multi-modal all the minima must be about the same.
Figure 1, which shows the breadth of each fitness distri-
bution over 32 runs, confirms this view. For this reason,
we suspect that this problem requires mostly exploita-
tion, rather than exploration, which also explains the
poor GA results. Evolutionary change is spread out
over the GA populations rather than concentrated on
a single individual as for simulated annealing and hill
climbing.

The squeaky shift mutator‘s performance relative to
random swaps suggests that it is smart in the wrong
way. In preliminary experiments we also tried swap-
ping, rather than shifting, observations and forcing ob-
servations to be swapped into certain parts of the per-
mutation. The shift operator performed the best, but
still not as well as the random swap mutator. See

(Globus et al. 2003) for some of this data. If random
outperforms intelligent, then clearly the intelligence is
being applied in the wrong way. We do not understand
the dynamics of permutation scheduling in any funda-
mental way, and we don’t even know if the dynamics
are fundamentally similar for different problems. Un-
til a better understanding is reached, the random swap
operators – with a decrease in the number of swaps as
evolution proceeds – appear best.

Figures 2-4 show that the individual objectives in
the weighted sum of equation 1 display much the same
trend as the fitness. Simulated annealing and hill climb-
ing with random swaps beats squeaky shifts and the ge-
netic algorithm in almost every objective of the fitness
function. However, notice that the range of average off-
nadir pointing is very large suggesting that this measure
made little difference, perhaps because the weight was
too low.

Figure 5 compares the number of unscheduled ob-
servations, an objective not found in the fitness func-
tion. Notice that the squeaky mutators in simulated
annealing and hill climbing are worse than the genetic
algorithms with random swaps. This suggests that the
squeaky mutators with simulated annealing and hill
climbing do a better job of scheduling the high priority
observations to make up for scheduling fewer observa-
tions.

It is difficult to say precisely why HBSS did so poorly
compared to simulated annealing and the other tech-
niques. Perhaps because the essence of the problem is
scheduling the observations in the proper order. HBSS
attempts to discover this order using the contention
heuristics. Perhaps the heuristics are simply the wrong
ones. However, perhaps the ability of simulated anneal-
ing and the other techniques to discover, and preserve,
partial orders of observations to schedule is the essence
of their superiority.

Summary

We compared fourteen different techniques for schedul-
ing EOS fleets on a realistically-sized model problem.
Simple techniques such as simulated annealing and hill
climbing outperformed the genetic algorithm and HBSS
with contention heuristics. Simple random swap muta-
tion outperformed more ’intelligent’ mutation. Reduc-
ing the number of random swaps as evolution proceeds
also improves performance. The most ’intelligent’ algo-
rithm with no learning, HBSS with contention heuris-
tics, barely outperformed random scheduling (ISAMP)
in spite of requiring far more computing resources. Al-
though we examined only one problem here, we have
seen essentially the same results on other problems
in this class. For some of this data see (Globus et
al. 2003). Apparently, taking advantage of previous
scheduling attempts, as simulated annealing, hill climb-
ing, and the genetic algorithm does, has more value
than large amounts of computation to choose just the
right move to make. For this application and these

techniques, fast and stupid with a little learning out-
performs smart.

Acknowledgements
This work was funded by NASA’s Computing, In-
formation, & Communications Technology Program,
Advanced Information Systems Technology Program
(contract AIST-0042), and by the Intelligent Systems
Program. Thanks to Alex Herz, Orbit Logic, Inc.
and Jerald Arp, PhD., Manager of Technical Support,
Space Imaging LLC for information regarding current
EOS systems. Thanks also to Bonnie Klein for re-
viewing this paper and to Jennifer Dungan, Jeremy
Frank, Robert Morris and David Smith for many help-
ful discussions. Finally, thanks to the developers of
the excellent Colt open source libraries for high per-
formance scientific and technical computing in Java
(http://hoschek.home.cern.ch/hoschek/colt).

References
Bresina, J. 1996. Heuristic-biased stochastic search.
In Proceedings of the Thirteenth National Conference
on Artificial Intelligence.
Frank, J.; Jonsson, A.; Morris, R.; and Smith, D. 2002.
Planning and scheduling for fleets of earth observing
satellites. In Proceedings of the 6th International Sym-
posium on Artificial Intelligence, Robotics, Automa-
tion and Space 2002.
Globus, A.; Crawford, J.; Lohn, J.; and Morris, R.
2002. Scheduling earth observing fleets using evo-
lutionary algorithms: Problem description and ap-
proach. In Proceedings of the 3rd International NASA
Workshop on Planning and Scheduling for Space.
Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A.
2003. Scheduling earth observing satellites with evo-
lutionary algorithms. In Conference on Space Mission
Challenges for Information Technology (SMC-IT).
Joslin, D. E., and Clements, D. P. 1999. Squeaky
wheel optimization. Journal of Artificial Intelligence
Research 10:353–373.
Potin, P. 1998. End-to-end planning approach for
earth observation mission exploitation. In SpaceOps
1998.
Rao, J. D.; Soma, P.; and Padmashree, G. S. 1998.
Multi-satellite scheduling system for leo satellite oper-
ations. In SpaceOps 1998.
Sherwood, R.; Govindjee, A.; Yan, D.; Rabideau, G.;
Chien, S.; and Fukunaga, A. 1998. Using aspen to
automate eo-1 activity planning. In Proceedings of the
1998 IEEE Aerospace Conference.
Syswerda, G., and Palmucci, J. 1991. The applica-
tion of genetic algorithms to resource scheduling. In
Proceedings of the Fourth International Conference on
Genetic Algorithms, 502–508.

Search technique mutation operator abbreviation mean fitness fitness std. dev.
simulated annealing temperature dependent swaps SaTd 9205 20

hill climbing temperature dependent swaps HcTd 9310 21
simulated annealing random swaps SaSr 9311 19

hill climbing random swaps HcSr 9368 25
simulated annealing squeaky swaps SaSs 9489 19

hill climbing squeaky swaps HcSs 9507 24
generational GA random swaps GgSr 9700 38
steady state GA random swaps GsSr 9700 25
steady state GA temperature dependent swaps GsTd 9741 31
generational GA temperature dependent swaps GgTd 9834 24
generational GA squeaky swaps GgSs 9964 53
generational GA squeaky swaps GsSs 10010 46

ISAMP random ISAMP 10463 11

Table 1: Scheduling algorithms tested ordered by mean fitness. Smaller values indicate better fitness. HBSS is left
out since processing time did not permit 32 HBSS runs of 100,000 schedules each. The best HBSS fitness in the
equivalent of 8 runs was 10442, a little better than the ISAMP mean but worse than the worst run for all other
techniques. The closest worst-run fitness value was 10120 (222 better than the HBSS best value) for the steady-state
genetic algorithm with squeaky shifts (GsSs).

Figure 1: Comparing fitness (vertical axis) for 32 runs. The boxes indicate the second and third quartiles. The line
inside the box is the median and the whiskers are the extent of the data. Outliers are represented by small circles.
Smaller numbers indicate better fitness.

Figure 2: Sum of the priority of unscheduled observations (
∑

Ou
Po from equation 1).

Figure 3: Mean slewing time needed for each scheduled observation (mean of S from equation 1).

Figure 4: Mean off-nadir pointing angle needed for each scheduled observation (mean of A from equation 1).

Figure 5: Number of unscheduled observations (|Ou| from equation 1).

